
ESMF	Regridding	

Robert	Oehmke,	Peggy	Li,	Ryan	O’Kuingh7ons	
NOAA	Coopera=ve	Ins=tute	for	Research	in	Environmental	Sciences	

University	of	Colorado,	Boulder		
robert.oehmke@noaa.gov	

	
January	30,	2017	

	

Context	

•  NEMS uses the Earth System Modeling Framework
(ESMF), which provides:
–  Fundamental coupling operations such as fast parallel regridding of

fields between models, parallel communication, and model time
management

–  Parallel data structures for representing fields, grids, and model
components in a standard way

•  This talk is about the regridding part of ESMF

•  Except where noted, the work presented here is finished
and we expect it to come out in ESMF 7.1.0 due late
spring/early summer 2017

•  Also available before that as a development snapshot

Basic	Regridding	Flow	

•  Setup grids to represent geometry
–  Cubed sphere for FV3
–  Tripole for MOM, Hycom, CICE
–  Gaussian for GSM

•  Build Fields on grids to hold data

•  Apply regridding matrix to move data from source to destination

•  Setup regridding matrix
between grids
–  Chose regrid method
–  Chose other regrid options

•  Build Exchange grid
between grids

•  Setup regridding matrix
using exchange grid

OR

ESMF	Cubed	Sphere	Support	

•  Two ways cubed spheres are
supported in ESMF:
1.  Unstructured Mesh

•  Data fields are 1D
•  Somewhat more efficient for calculating

regridding weights

2.  Multi-tile Grid:
•  Data fields are 2D which more naturally

matches shape of tiles

	
	

	

	

•  Both representations can be regridded to other ESMF

geometry types (i.e. Grids, Meshes, and Location
Streams)

•  We have recently added three new APIs to allow easier

creation of cubed spheres in ESMF

	
	

	

	

Cubed	Sphere	Mesh	Genera<on	API	

ESMF_MeshCreateCubedSphere(tileSize, nx, ny, rc)
Create a ESMF_Mesh object for a cubed sphere grid using identical regular
decomposition for every tile. The grid coordinates are generated based on the algorithm
used by GEOS-5. The tile resolution is defined by tileSize. The total number of PETs has
to be nx x ny x 6 (i.e. the smallest number of PETS it can run on is 6). We expect this
restriction to be lifted by February 2017.

tilesize - the number of elements on each side of the tile of the cubed sphere grid
nx - the number of processors on the horizontal size of each tile
ny - the number of processors on the vertical size of each tile
[rc] - return code; equals ESMF_SUCCESS if there are no errors

! Calculate decomposition
nx = petCount/6
ny = 1

! Create Mesh
mesh = ESMF_MeshCreateCubedSphere(tileSize=45, nx=nx,ny=ny, rc=localrc)

Cubed	Sphere	Grid	Genera<on	API	

ESMF_GridCreateCubedSphere(tileSize,regDecompPTile, &
decompflagPTile, deLabelList, delayout, name, rc)

Create a six-tile ESMF_Grid for a Cubed Sphere grid using regular decomposition. Each tile can have
different decomposition. The grid coordinates are generated based on the algorithm used by GEOS-5.
The tile resolution is defined by tileSize.

tilesize - the number of elements on each side of the tile of the cubed sphere grid
[regDecompPTile] - list of DE counts for each dimension. The second index steps through the tiles.
[decompflagPTile] - list of decomposition flags indicating how each dimension of each tile is to be divided between the
DEs.

[deLabelList] - list assigning DE labels to the default sequence of DEs.
[delayout] - optional ESMF_DELayout object to be used. By default a new DELayout object will be created with as many
DEs as there are PETs.

[name] -ESMF_Grid name.
[rc] - Return code; equals ESMF_SUCCESS if there are no errors.

 ! Setup Decomposition

decompTile(:,1)=(/2,2/) ! Tile 1
decompTile(:,2)=(/2,2/) ! Tile 2
decompTile(:,3)=(/2,2/) ! Tile 3
decompTile(:,4)=(/1,3/) ! Tile 4
decompTile(:,5)=(/1,3/) ! Tile 5
decompTile(:,6)=(/1,3/) ! Tile 6

! Create cubed sphere grid
grid = ESMF_GridCreateCubedSphere(tileSize=20, regDecompPTile=decomptile, rc=rc)

Cubed	Sphere	Read	From	GridSpec	File	API	

ESMF_GridCreateMosaic(filename,regDecompPTile,
 decompflagPTile, &
 deLabelList, delayout, &
 name, tileFilePath, rc)
Create a six-tile ESMF_Grid for a cubed sphere grid using regular decomposition. Each tile can have
different decomposition. The tile connections are defined in a GRIDSPEC format mosaic file.
 filename - The name of the GRIDSPEC Mosaic file

 [regDecompPTile] - List of DE counts for each dimension

 [decompflagPTile] - List of decomposition flags indicating how dimension of each tile is to be divided between DEs

 [deLabelList] - List assigning DE labels to the default sequence of DEs

 [delayout] - Optional ESMF_DELayout object to be used

 [name] - ESMF_Grid name

 [tileFilePath] - Optional argument to define the path where the tile files reside

 [rc] - Return code; equals ESMF_SUCCESS if there are no errors.

! Create cubed sphere grid from file using default decomposition
 grid = ESMF_GridCreateMosaic(filename='data/C48_mosaic.nc’, rc=rc)

Periodic	Grid	Create		
(Tripole	or	Gaussian)		

ESMF_GridCreate1PeriDim(regDecomp, decompflag, &
 minIndex, maxIndex, &
 polekindflag, …., rc)
Create a grid with one periodic dimension using regular decomposition. The grid will consist of one tile.
After creation the user needs to set the coordinates in the grid using ESMF_GridAddCoord() and then
ESMF_GridGetCoord().
 [regDecomp] – DE counts for each dimension

 [decompflag] – Decomposition flags indicating how each dimension is to be divided between the DEs

 [minIndex] – The lowest index in the grid for each dimension.

 maxIndex- The maximum index in the grid for each dimension.

 [polekindflag] – flag specifying the type of connection that occurs at each pole. Defaults to monopole.

 [rc] - Return code; equals ESMF_SUCCESS if there are no errors.

! Use defaults to create 100x100 spherical grid with a monopole at each pole
! (e.g. for Gaussian)
grid = ESMF_GridCreate1PeriDim(maxIndex=(/100,100/), rc=rc)

! Create 100x100 spherical grid with bipole and monopole
! (e.g. for Tripole)
grid = ESMF_GridCreate1PeriDim(maxIndex=(/100,100/), &
 polekindflag=(/ESMF_ POLEKIND_MONOPOLE, ESMF_POLEKIND_BIPOLE/), &
 rc=rc)

! create a grid
grid = ESMF_GridCreate1PeriDim(minIndex=(/1,1/), &
 maxIndex=(/10,20/), &
 regDecomp=(/2,2/), name="atmgrid", rc=rc)

 ! create a field from the grid and typekind
! this allocates memory for you
field1 = ESMF_FieldCreate(grid, &
 typekind=ESMF_TYPEKIND_R4, &
 indexflag=ESMF_INDEX_DELOCAL, &
 staggerloc=ESMF_STAGGERLOC_CENTER, &
 name="pressure", rc=rc)

! get local bounds, assuming one local DE
call ESMF_FieldGet(field1, localDe=0, farrayPtr=farray2d, &
 computationalLBound=clb, computationalUBound=cub, &
 totalCount=ftc)

do i = clb(1), cub(1)
 do j = clb(2), cub(2)

 farray2d(i,j) = … ! computation over local DE
 enddo
enddo

An ESMF_Field wraps model
variables

Additional metadata is stored along
with the field data, such as the
associated grid, stagger, etc.

Field options

-  data types: int*4, int*8, real*4,
real*8

-  memory allocated by user or
ESMF

-  stagger locations: center, corner,
edges

-  local or global indexing
-  ungridded dimensions
-  halo region (“ghost” cells)

Code that creates an ESMF_Field on center stagger with
local indexing. Memory is allocated by ESMF. The local
bounds are retrieved. 9	

Crea<ng	a	Field	on	a	Grid	

! create source and destination grids
srcGrid = ESMF_GridCreateCubedSphere(...)
dstGrid = ESMF_GridCreate1PeriDim(...)

! Create Fields to hold data
srcField = ESMF_FieldCreate(srcGrid,...)
dstField = ESMF_FieldCreate(dstGrid,...)

! compute regrid weight matrix
call ESMF_FieldRegridStore(srcField, dstField, routehandle, ...)

! loop over time
do t=1,...

 ! compute new srcField

 ! apply regrid weight matrix in parallel

 call ESMF_FieldRegrid(srcField, dstField, routehandle, ...)
enddo

! release resources
call ESMF_FieldRegridRelease(routehandle, ...)

Regrid operation
computed in two phases

The first phase computes an
interpolation weight matrix
which is efficiently stored in an
ESMF_RouteHandle.

The weights only need to be
computed once.

The second phase applies the
weight matrix to a source
field resulting in a destination
field.

This same pattern is used for
other operations such as
redistribution and halo.

Typical code pattern for executing an ESMF communications
operations. Once computed, a RouteHandle can be reused for
multiple calls. 10	

Calculate	Regridding	Weights	and	Apply	Them	

Regrid	Methods	
•  Bilinear:	

–  Des=na=on	is	a	linear	combina=on	of	source	cell	corners	
–  Weights	based	distance	from	corners	
–  Typically	used	to	regrid	model	state	variables	(e.g.	temperature)	

	
	

•  Higher	order	patch	recovery:	
–  Mul=ple	polynomial	patches	represent	region	around	source	cell	
–  Des=na=on	is	linear	combina=on	of	patch	values	
–  Yields	be7er	deriva=ves/smoother	results	than	bilinear	
–  Based	on	“patch	recovery”	used	in	finite	element	modeling	[1][2]	
	
	

•  Nearest	neighbor:	
–  Des=na=on	is	equal	to	closest	source	point	(or	vise	versa)	
–  Useful	for	extrapola=ng	data	outside	of	source	grid,	or	categorical	data	

	
	

	

Conserva<ve	Regrid	Methods	
	

•  First-order	conserva=ve:	
–  Des=na=on	is	combina=on	of	intersec=ng	source	cells	
–  Preserves	integral	of	data	across	interpola=on	

•  Higher-order	conserva=ve	(in	progress):	
–  Des=na=on	is	combina=on	of	intersec=on	source	cells	modified	to	

take	into	account	source	cell	gradient	
–  Requires	a	wider	stencil	and	more	computa=on,	so	more	expensive	

in	terms	of	memory	and	=me	than	first-order	
–  Preserves	integral	of	field	across	interpola=on,	but	gives	smoother	

results	than	first-order	(especially	when	going	from	coarser	to	finer	
grids	

	
	

	

	

	
	

Conserva<ve	Methods	Example	

Source:
•  10 degree uniform global
•  F = 2+cos(lon)^2 * cos(2*lat)

Destinations:
•  2 degree uniform global

First-Order Conservative

Higher-Order Conservative
(Preliminary)

F = 2+cos(lon)^2 * cos(2*lat)

Other	Regrid	Op<ons	
	

•  Path	between	points	in	bilinear	on	a	sphere:	
–  Straight	line	
–  Great	circle		

•  Op=ons	for	extrapola=ng	across	pole	region:	
–  Full	circle	average	
–  N-point	average	
–  Teeth	
–  No	pole		

•  Others:		
–  Source	and	Des=na=on	Masking	
–  Informa=on	about	what	happened	to	each	des=na=on	loca=on	

during	regridding	(e.g.	outside	source	grid,	masked,	etc.)		
–  User	area	
–  Ignore	unmapped,	Ignore	degenerate	
	

	

Full circle avg.
N-point avg

Teeth No Pole

conservative
regrid

Side B

Side A

Modeled on GFDL Exchange Grid
(V. Balaji et al. [3])

ESMF_XGrid generated from two
sets of source grids/meshes
 (sideA & sideB).
-  merge process in which higher

priority grids clip into lower priority
grids

-  masks are respected

XGrid supports first-order
conservative regridding - will
support higher-order conservative
method next release

ESMF_Field is constructed on the
XGrid mesh and used as source/
destination of regridding operations.

ESMF_XGrid

conservative
regrid

conservative
regrid

Exchange	Grid			

Exchange	Grid	Create	API	
ESMF_XGridCreate(sideAGrid, sideAMesh, sideBGrid, sideBMesh, &
 …, sideAMaskValues, sideBMaskValues, …, rc)

Create an exchange grid between a set of Grids and Meshes on one side with a set of Grids and Meshes
on another. Once the exchange grid has been created data can be interpolated between the two sides and
the center using ESMF_FieldRegridStore().
 [sideAGrid] - List of Grids on side A of the exchange grid.

 [sideAMesh] – List of Meshes on side A of the exchange grid.

 [sideBGrid] - List of Grids on side B of the exchange grid.

 [sideBMesh] – List of Meshes on side B of the exchange grid.

 [sideAMaskValues] – List of values which indicates a cell should be masked on side A.

 [sideBMaskValues] – List of values which indicates a cell should be masked on side B.

 ! Create a Mesh for side A
atmMesh=ESMF_MeshCreateCubedSphere(…)

! Create two Grids for side B
landGrid=ESMF_GridCreate1PeriDim(…)
oceanGrid=ESMF_GridCreate1PeriDim(…)

! Create an exchange grid between the atmosphere Mesh and both land and ocean Grids.
! Mask out any cells in the land and ocean grids with a mask value of 1.
xgrid = ESMF_XGridCreate(sideAMesh=(/atmmesh), sideBGrid=(/landGrid, oceanGrid/),
 sideBMaskValues=(/1/), rc=rc)

! Start with atmMesh, landGrid, and oceanGrid

! Create exchange grid
xgrid = ESMF_XGridCreate(sideAMesh=(/atmmesh), sideBGrid=(/landGrid, oceanGrid/), ….)

! Create Fields to hold data
atmField = ESMF_FieldCreate(atmMesh,...)
landField = ESMF_FieldCreate(landGrid,...)
oceanField = ESMF_FieldCreate(oceanGrid,...)
xField = ESMF_FieldCreate(xgrid,...)

! compute regrid weight matrix from atm to xgrid
call ESMF_FieldRegridStore(xgrid, atmField, xField, a2x_rhandle, ...)

! compute regrid weight matrix from xgrid to ocean
call ESMF_FieldRegridStore(xgrid, xField, oceanField, x2o_rhandle, ...)

! loop over time moving data from atm to ocean through xgrid
do t=1,…

 ! compute new atmField

 ! apply regrid weight matrix moving data from atm to xgrid

 call ESMF_FieldRegrid(atmField, xField, a2x_rhandle, ...)

 ! apply regrid weight matrix moving data from xgrid to ocean
 call ESMF_FieldRegrid(xField, oceanField, x2o_rhandle, ...)

enddo

Regridding	Using	an	Exchange	Grid	

Scheduled	for	Next	Release	

	

•  Cubed	sphere	crea=on	interfaces	(7.1.0)		ß	already	working	
	
•  Higher-order	conserva=ve	regridding	(7.1.0)	ß	in	progress	
	
•  Extrapola=on	of	points	that	lie	outside	the	source	grid	(7.1.0)	

•  Dynamic	masking	during	sparse	matrix	mul=ply	(7.1.0)	
	

	

References	
1.  Khoei S.A., Gharehbaghi A. R. The superconvergent patch recovery

technique and data transfer operators in 3d plasticity problems. Finite
Elements in Analysis and Design, 43(8), 2007.

2.  Hung K.C, Gu H., Zong Z. A modified superconvergent patch
recovery method and its application to large deformation problems.
Finite Elements in Analysis and Design, 40(5-6), 2004.

3.  Balaji, V., Anderson, J., Held, I. Winton, M. Malyshev, S., Souffer, R.
The FMS Exchange Grid: a mechanism for data exchange between
Earth System components on independent grids. 2007.

If	you	have	ques=ons	or	requests,	
	come	talk	to	me,	or	email:	

esmf_support@list.woc.noaa.gov	
			

End	of	Presenta=on	

F95	Regridding	Example	

! Create Geometry Classes
srcGrid= ESMF_GridCreateCubedSphere(…)
dstMesh=ESMF_MeshCreate(…)

! Create Fields
srcField=ESMF_FieldCreate(srcGrid, …)
dstField=ESMF_FieldCreate(dstMesh, …)

! Calc regrid sparse matrix (routeHandle)
ESMF_FieldRegridStore(srcField, dstField, …routeHandle, …)

! Loop applying regrid sparse matrix (routeHandle) whenever source data changes
do i=1,…
 ! Compute new srcField

 ….

 ! Apply regrid sparse matrix (routeHandle)

 ESMF_FieldRegrid(srcField, dstField, …routeHandle, …)

 ! dstField contains regridded data here
enddo

Supported	Geometry	Types	
•  Grid:		

–  Structured	representa=on	of	a	region	
–  Consists	of	one	or	more	logically	

rectangular	=les	(e.g.	a	uniform	global	
grid	or	a	cubed	sphere	grid)	

	
•  Mesh:		

–  Unstructured	representa=on	of	a	region	
–  In	2D:	polygons	with	any	number	of	sides		

•  A	single	mesh	cell	can	consist	of	
mul=ple	pieces	(e.g.	Hawaii)	

–  In	3D:	tetrahedrons	&	hexahedrons	
	
•  LocStream	(Loca=on	Stream):	

–  Set	of	disconnected	points		
•  E.g.	loca=ons	of	observa=ons	

–  Very	flexible	and	efficient	
–  Can’t	be	used	with	every	regrid	method	

	

	

Spherical	Regrid	Support	
•  Regrid	works	with	spherical	(lon,	lat,	radius)	coordinates	
•  All	regrid	methods	supported	between	any	pair	of:	

–  2D	Global	or	2D	regional	logically	rectangular	Grids	
–  2D	Unstructured	Meshes	composed	of	polygons	with	any	number	of	sides	
–  2D	Mul=-=le	grids	(e.g.	cubed	spheres)	

•  Bilinear	supported	between	any	pair	of:	
–  3D	Meshes	composed	of	hexahedrons	
–  3D	Global	or	regional	logically	rectangular	Grids	

•  LocStreams	supported	for	above	depending	on	regrid	method	
	

	

	

Unstructured Grid Multi-tile Grid 3D Global Spherical Grid

Cartesian	Regrid	Support	
•  Regrid	works	with	Cartesian	(x,y,z)	coordinates	
•  All	regrid	methods	between	any	pair	of:	

–  2D	Meshes	composed	of	polygons	with	any	number	of	sides	
–  2D	logically	rectangular	Grids	

•  Bilinear,	conserva=ve,	or	nearest	neighbor	between	any	pair	of:	
–  3D	Meshes	composed	of	hexahedrons	
–  3D	logically	rectangular	Grids	

•  LocStreams	supported	for	above	depending	on	regrid	method	

 2D Unstructured Mesh
From www.ngdc.noaa.gov

3D Grid 3D Unstructured Mesh

Interfaces	

•  Complete	F95	API:	
–  use	ESMF	
–  Derived	types	and	methods	
–  Inves=ga=ng	moving	to	Fortran	2003	

•  C	API:	
–  #include	“ESMC.h”	
–  Structs	and	methods	

•  Python	API:	
–  Import	ESMPy	
–  Classes	with	methods	

•  Applica=ons:	
–  File-based	regrid	weight	genera=on:	

mpirun	–np	<N>	ESMF_RegridWeightGen	–s	….	
–  File-based	weight	genera=on	AND	applica=on	of	weights:	

mpirun	–np	<N>	ESMF_Regrid	–s…		

Regridding	Applica<on	Examples	

•  Regrid weight generation:

 mpirun –np 16 ESMF_RegridWeightGen -s src_grid_file.nc –d dst_grid_file.nc
 -m regrid method … Other options ….
 -w weight_file.nc

•  src_grid_file.nc – file describing source grid
•  dst_grid_file.nc – file describing destination grid
•  regrid_method – the regrid method used to calculate the weights
•  weight_file.nc – after running contains the regrid sparse matrix

•  Regridding data between variables in two files:

 mpirun –np 16 ESMF_Regrid –s src_file.nc –d dst_file.nc
 -m regrid method … Other options ….

•  src_file.nc – file containing source grid and data
•  dst_file.nc - file containing destination grid
•  regrid_method – the regrid method to use

Supported	Grid	File	Formats	
•  SCRIP:	

–  Format	used	by	SCRIP	regridding	tool	
–  2D	spherical	logically	rectangular	Grids	or	unstructured	Meshes	

•  ESMF	unstructured:	
–  Custom	ESMF	format	
–  2D	or	3D	/	spherical	or	Cartesian	unstructured	Meshes		
	

•  UGRID:	
–  Proposed	CF	conven=on	
–  2D	or	3D	/	spherical	or	Cartesian	unstructured	Meshes		

•  CF	Grid:	
–  CF	conven=on	
–  2D	spherical	logically	rectangular	Grid		

•  GRIDSPEC	mosaic:	
–  Format	from	GFDL	
–  2D	spherical	set	of	logically	rectangular	=les	with	connec=ons	between	them			

Regrid	Weight	Calcula<on	
Performance	

0	

5	

10	

15	

20	

25	

30	

64	 128	 256	 512	 1024	 2048	 4096	

Ti
m
e	
in
	S
ec
on

ds
	

Number	of	Processors	

First-Order	Conserva<ve	Interpola<on	Weight	Calcula<on	
(2km	unstructured	land	only	grid	to	1/8	degree	global	grid)		

Platform: IBM IDataPlex cluster (Yellowstone	at	NCAR)	
Grid size: ~30 million cells and ~4 millions cells

Other	Tools	Using	ESMF	Regrid	

•  Ultrascale	Visualiza=on	Climate	Data	Analysis	Tool	(UV-CDAT):	
–  Package	designed	for	analyzing	large	climate	data	sets	
–  Uses	ESMF	regridding	via	ESMPy	
–  Won	Federal	Laboratory	Consor=um	technology	transfer	award		

•  Cf-python:	
–  Python	package	for	manipula=ng	cf	data	and	files	
–  Uses	ESMF	regridding	via	ESMPy	
	
	

•  NCAR	Command	Language	(NCL):		
–  Language	for	scien=fic	data	analysis	and	visualiza=on	
–  Uses	ESMF	regridding	via	ESMF_RegridWeightGen	applica=on	
	

	

